Superelastic Graphene Aerogel/Poly(3,4-Ethylenedioxythiophene)/MnO2 Composite as Compression-Tolerant Electrode for Electrochemical Capacitors

نویسندگان

  • Peng Lv
  • Yaru Wang
  • Chenglong Ji
  • Jiajiao Yuan
چکیده

Ultra-compressible electrodes with high electrochemical performance, reversible compressibility and extreme durability are in high demand in compression-tolerant energy storage devices. Herein, an ultra-compressible ternary composite was synthesized by successively electrodepositing poly(3,4-ethylenedioxythiophene) (PEDOT) and MnO2 into the superelastic graphene aerogel (SEGA). In SEGA/PEDOT/MnO2 ternary composite, SEGA provides the compressible backbone and conductive network; MnO2 is mainly responsible for pseudo reactions; the middle PEDOT not only reduces the interface resistance between MnO2 and graphene, but also further reinforces the strength of graphene cellar walls. The synergistic effect of the three components in the ternary composite electrode leads to high electrochemical performances and good compression-tolerant ability. The gravimetric capacitance of the compressible ternary composite electrodes reaches 343 F g−1 and can retain 97% even at 95% compressive strain. And a volumetric capacitance of 147.4 F cm−3 is achieved, which is much higher than that of other graphene-based compressible electrodes. This value of volumetric capacitance can be preserved by 80% after 3500 charge/discharge cycles under various compression strains, indicating an extreme durability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene/Polyaniline Aerogel with Superelasticity and High Capacitance as Highly Compression-Tolerant Supercapacitor Electrode

Superelastic graphene aerogel with ultra-high compressibility shows promising potential for compression-tolerant supercapacitor electrode. However, its specific capacitance is too low to meet the practical application. Herein, we deposited polyaniline (PANI) into the superelastic graphene aerogel to improve the capacitance while maintaining the superelasticity. Graphene/PANI aerogel with optimi...

متن کامل

Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage.

MnO2 nanoparticle enriched poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires are fabricated by simply soaking the PEDOT nanowires in potassium permanganate (KMnO4) solution. The structures of these MnO2 nanoparticle enriched PEDOT nanowires are characterized by SEM and TEM, which show that the MnO2 nanoparticles have uniform sizes and are finely dispersed in the PEDOT matrix. The chemical cons...

متن کامل

Preparation of PEDOT/GO, PEDOT/MnO2, and PEDOT/GO/MnO2 nanocomposites and their application in catalytic degradation of methylene blue

The nanocomposite materials of poly(3,4-ethylenedioxythiophene)/graphene oxide (PEDOT/GO), poly(3,4-ethylenedioxythiophene)/MnO2 (PEDOT/MnO2), and poly(3, 4-ethylenedioxythiophene)/graphene oxide/MnO2 (PEDOT/GO/MnO2) were successfully prepared by facile and template-free solution method. The structure and morphology of nanonanocomposites were characterized by Fourier transform infrared spectros...

متن کامل

Solid-State Heating Synthesis of Poly (3,4-Ethylenedioxythiophene)/Gold/Graphene Composite and Its Application for Amperometric Determination of Nitrite and Iodate

A ternary composite of poly (3,4-ethylenedioxythiophene)/gold/graphene (PEDOT/Au/GO) for promising electrochemical sensor was synthesized by solid-state heating method. The interaction between the PEDOT, Au, and GO explored for detection of nitrite and iodate. It was found that the PEDOT/Au/GO composite had shale-like morphology with a uniform distribution of gold nanoparticles. Electrochemical...

متن کامل

FABRICATION AND CHARACTERIZATION OF POLYANILINE-GRAPHENE COMPOSITE AS ELECTRODE IN ELECTROCHEMICAL CAPACITOR

In this study, polyaniline-graphene composites with different nano-structures are synthesized and the behaviour of the obtained composites serving as electrode materials in electrochemical capacitors is studied. The morphology, crystal structure, and thermal stability of the composites are examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Thermal gravimetric analys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017